12 research outputs found

    Ultralow noise pre-amplified receiver for free-space optical communications

    Get PDF
    The demand for high data rate in space communication links is increasing due to the growth of space exploration missions inter-satellite, and satellite-to-Earth data transmission. Optical communication systems capable of handling hundreds of Gigabits per second data transmission with a single light carrier and are suitable for such space links. In addition, light offers smaller beam divergence in space due to the shorter wavelength compared to radio frequency beams (RF), resulting in smaller link loss and smaller size receiver apertures required.The receiver sensitivity is one of the key factors that determines the capacity and reach for such long haul communication links. Currently, there is a search for the optimal modulation format and receiver implementation combination to achieve the best sensitivity for error-free transmission. In this thesis, we discuss and implement the best possible combination of these, both theoretically and experimentally. Phase sensitive parametric optical amplifier (PSA) can amplify optical signals ideally without adding any excess noise, limited only by quantum fluctuations. Employing these as preamplifiers in free-space receivers can thus improve the sensitivity compared to erbium doped fiber amplifiers. We implement a two-mode PSA with a noise figure of 1.2 dB, which can amplify both quadratures of a signal, being used as a pre-amplifier in coherent receiver setup. We experimentally demonstrate a record black-box sensitivity of 1 photon-per-bit using PSA receiver for quadrature phase shift keying (QPSK) modulation format at 10.5 Gbps with 100 % overhead forward error correction code. This sensitivity also includes ultra-low pump power (-72 dBm) which is recovered using pre-amplified injection locking. We also investigate the most power efficient modulation formats, where a combination of m-(pulse-position modulation) PPM+QPSK with higher m-values provides best sensitivity at relatively high received SNR-per-bit, while QPSK outperforms all formats investigated at very low SNR-per-bit, which is ideal for space communications

    Phase Sensitive Amplifiers for Free-Space Optical Communications

    Get PDF
    The demand for high data rate free-space communications is increasing due to the planned future space exploration missions. In the next few years there is a need to increase the speed by 100 times according to NASA, and this necessitates that transmission systems operate at higher carrier frequencies. Optical communication systems are capable of handling hundreds of Gigabits per second data with a single light carrier and are suitable for high data rate space communication links. The sensitivity of the receiver is one of the key factors to achieve such high speed communication. Phase sensitive parametric optical amplifier (PSA) can amplify optical signals ideally without degrading the signal to noise ratio. Employing these as pre-amplifiers in free-space receivers can thus improve the sensitivity significantly. In this thesis we investigate the prospects of implementing a PSA based receiver for free space links. We use a 10 GBd QPSK signal and a pump wave to generate the necessary idler wave at the transmitter. The three waves are sent through a free-space link where only loss is considered as the channel impairment. The transmitted pump power was much lower than the combined signal and idler wave powers which would otherwise impair the overall sensitivity. At the receiver, the received pump power is as low as -65 dBm whereas a combined signal and idler power of -50 dBm was needed to achieve a bit-error rate of 10−310^{-3}. The received low power pump was recovered using injection locking and a phase locked loop setup. Key results show that, the sensitivity can be improved by 3 dB with respect to an low noise figure erbium doped fiber amplifier (EDFA) based receiver

    One photon-per-bit receiver using near-noiseless phase-sensitive amplification

    Get PDF
    Space communication for deep-space missions, inter-satellite data transfer and Earth monitoring requires high-speed data connectivity. The reach is fundamentally dictated by the available transmission power, the aperture size, and the receiver sensitivity. A transition from radio-frequency links to optical links is now seriously being considered, as this greatly reduces the channel loss caused by diffraction. A widely studied approach uses power-efficient formats along with nanowire-based photon-counting receivers cooled to a few Kelvins operating at speeds below 1 Gb/s. However, to achieve the multi-Gb/s data rates that will be required in the future, systems relying on pre-amplified receivers together with advanced signal generation and processing techniques from fibre communications are also considered. The sensitivity of such systems is largely determined by the noise figure (NF) of the pre-amplifier, which is theoretically 3 dB for almost all amplifiers. Phase-sensitive optical amplifiers (PSAs) with their uniquely low NF of 0 dB promise to provide the best possible sensitivity for Gb/s-rate long-haul free-space links. Here, we demonstrate a novel approach using a PSA-based receiver in a free-space transmission experiment with an unprecedented bit-error-free, black-box sensitivity of 1 photon-per-information-bit (PPB) at an information rate of 10.5 Gb/s. The system adopts a simple modulation format (quadrature-phase-shift keying, QPSK), standard digital signal processing for signal recovery and forward-error correction and is straightforwardly scalable to higher data rates. Space communication: Opening optical links Communication links for deep-space exploration spacecraft and satellites could become more efficient using an optical system which can reduce signal losses during transmission and delivers one bit of data per each received photon at a rate of 10 gigabits per second. Peter Andrekson and colleagues at Chalmers University of Technology in Sweden developed the system and demonstrated its potential in laboratory scale experiments. It relies on a technology known as phase-sensitive optical amplification. The researchers transmitted signals across only a one meter, but they believe their work proves the validity of a process that could readily be scaled up for communication across space. Replacing current radio-frequency technology with more effective optical systems could meet the demands of future space communications systems, which will need to operate at higher data rates and across greater distances

    One photon-per-bit receiver using near-noiseless phase-sensitive amplification

    Get PDF
    Noise fundamentally limits the capacity and reach in all communication links. In optical space communications, noise primarily originates from the detection process and limits the signal fidelity. . Therefore, the receiver sensitivity plays a key role, dictating the minimum power needed to recover the information transmitted. The widely explored approach of using the pulse-position modulation format trades-off sensitivity against receiver bandwidth and thus data-rate. Here we report on a novel, spectrally efficient, approach based on a coherent receiver with a near-noiseless phase-sensitive pre-amplifier operating at room temperature and demonstrate a sensitivity of one photon-per-bit of incident power at a data rate of 10 Gb/s. The results provide a path to future high-capacity inter-satellite and deep space, and other free-space communication linksComment: 12 pages, 3 figure

    Optical injection locking at sub nano-watt powers

    Get PDF
    We demonstrate optical injection locking (OIL) at record low injection power of −65 dBm using EDFA-based pre-amplification and an electrical phase locked loop (PLL). Investigating the phase noise characteristics of OIL, we find that at low injection powers the slave laser linewidth and injection ratio strongly influence the phase noise of the locked slave output. By introducing an EDFA pre-amplifier, the minimum locking power for OIL is reduced. Moreover, using this pre-amplifier we find that there exists an optimum injection power into the slave where the output phase noise is minimized and is below the phase noise without EDFA. We evaluate an OIL-based pump recovery in a phase sensitive amplifier (PSA) receiver system aimed at free-space communications

    Enhanced analog-optical link performance with noiseless phase-sensitive fiber optical parametric amplifiers

    Get PDF
    In this paper, we investigate the enhancement of analog optical link performance with noiseless phase-sensitive fiber optical parametric amplifiers. The influence of different noise sources in the link impacts the quality of analog optical signals, especially with low optical signal power, which has not been investigated before. Theoretically, the increase in signal-to-noise ratio and spurious-free dynamic range can be up to similar to 6 dB and similar to 4 dB, respectively, if the noise figure of optical pre-amplifier drops 3 dB when the received optical power is less than -65 dBm. In addition, experiments based on a 1.3 dB-noise-figure phase-sensitive fiber optical parametric amplifier and conventional optical pre-amplifiers are implemented, and the measured results agree with the theoretical expectations. This illustrates that noiseless phase-sensitive optical amplification may pave the way to long-haul distribution of analog optical signals and find applications in microwave-photonic systems

    One photon per bit communication for free-space optical links

    No full text
    We demonstrate a free-space transmission experiment showing bit-error-free, \u27black-box\u27 sensitivity of 1 photon-per-information-bit (PPB) at a net information rate of 10.5 Gb/s. The system uses a simple modulation format (QPSK) transmitter and near noiseless phase sensitive pre-amplified coherent receiver

    High Sensitivity Receiver Demonstration Using Phase Sensitive Amplifier for Free-Space Optical Communication

    No full text
    For the first time, phase sensitive amplifier is demonstrated as a pre-amplifier in free-space optical communication. Record sensitivity of 4.5 photons/bit (signal+idler+pump) at 10(-3) BER for 10GBd-QPSK data is achieved, and is 2.5 dB higher than an EDFA pre-amplified receiver

    Power Efficient Communications Employing Phase Sensitive Pre-Amplified Receiver

    No full text
    The receiver sensitivity is a very important metric in optical communication links operating at low received signal powers. Phase sensitive optical amplifiers (PSAs) can amplify optical signals without excess noise, thus providing a fundamental sensitivity improvement of 3 dB when employed as a pre-amplifier compared to conventional erbium doped fiber amplifiers (EDFA). In this paper, we investigate, both theoretically and experimentally, the sensitivities achieved using power efficient multi-dimensional modulation formats such as M-ary pulse position modulation format (M-PPM) and M-PPM combined with quadrature phase shift keying (QPSK) along with a near-noiseless PSA pre-amplified coherent intradyne receiver. We find that at high signal to noise ratios (SNRs) corresponding to low bit-error-rates (BER), M-PPM+QPSK results in the best sensitivity, which is improved with the order M, while at low SNRs corresponding to high BER (~14% where 100% overhead forward error correction codes (FEC) would be needed to recover the data), QPSK is the most sensitive format, while at the same time providing the best spectral efficiency. We report experimental sensitivities of 2.1 photons per information bit (PPB) at a pre-FEC BER=10-3 using 64-PPM+QPSK and assuming 7% FEC, and 0.8 PPB at a pre-FEC BER= 0.14 using QPSK and assuming 100% FEC

    Power efficient communications employing phase sensitive pre-amplified receiver

    No full text
    The receiver sensitivity is a very important metric in optical communication links operating at low received signal powers. Phase sensitive optical amplifiers (PSAs) can amplify optical signals without excess noise, thus providing a fundamental sensitivity improvement of 3 dB when employed as a pre-amplifier compared to conventional erbium doped fiber amplifiers (EDFA). In this letter, we investigate, both theoretically and experimentally, the sensitivities achieved using power efficient multi-dimensional modulation formats such as M-ary pulse position modulation format (M-PPM) and M-PPM combined with quadrature phase shift keying (QPSK) along with a near-noiseless PSA pre-amplified coherent intradyne receiver. We find that at high signal to noise ratios (SNRs) corresponding to low bit-error-rates (BER), M-PPM+QPSK results in the best sensitivity, which is improved with the order M, while at low SNRs corresponding to high BER (14% where 100% overhead forward error correction codes (FEC) would be needed to recover the data), QPSK is the most sensitive format, while at the same time providing the best spectral efficiency. We report experimental sensitivities of 2.1 photons per information bit (PPB) at a pre-FEC BER = 10-3 using 64-PPM+QPSK and assuming 7% FEC, and 0.8 PPB at a pre-FEC BER = 0.14 using QPSK and assuming 100% FEC. </p
    corecore